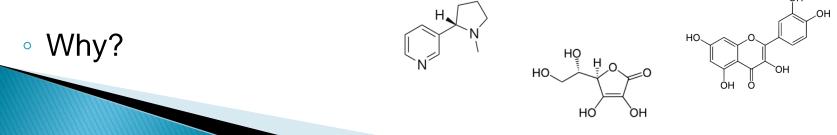

Novel MS approaches for understanding flavonoid bioavailability and metabolism

Alyson Mitchell, PhD John Kinsella Chair in Food, Nutrition and Health Department of Food Science & Technology, UC Davis Food Safety and Measurement Facility, UC Davis

V&E and FST Symposium: Vision for the future

April 11, 2015

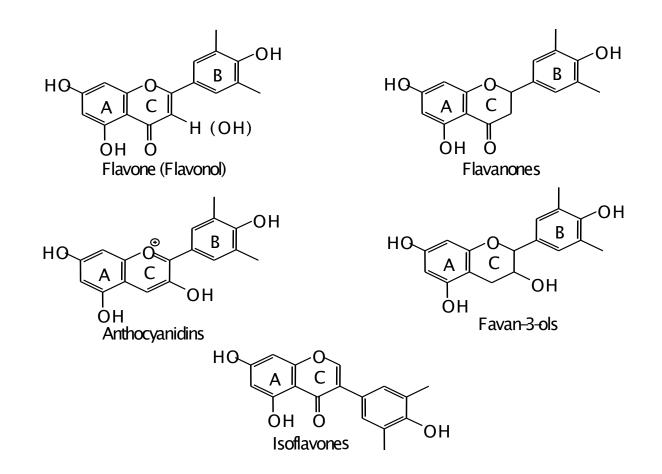


Fruit, Vegetables & the American Diet

- Epidemiological studies indicate people who consume diets rich in fruits and vegetables have a reduced risk of chronic diseases
 - stroke, type II diabetes, some cancers and heart disease
- Accordingly, AHA, AICR, NIH, CDC and USDA began promoting F&V consumption more than a decade ago
 - Today USDA guidelines call for 2 cups fruit and 2.5 cups vegetables for adults eating 2000 calorie per day
- The US population is still not eating enough F&V to gain these benefits from them
- To improve human health new approaches, based upon an analytical understanding of the food-human interface, are needed to provide better information to guide dietary guidelines

Why Focus on Fruit & Vegetables

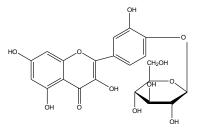
- Primary dietary source of vitamins, minerals, fiber and a wide array of non-essential nutrient phytochemicals
 - Polyphenolic antioxidants (e.g. flavonoids), carotenoids (e.g. lycopenes, β-carotene), alkaloids, glucosinolates, etc.
- The health benefits associated with F&V consumption are largely thought to be due to the synergistic activities of these bioactive compounds
- However, human studies are often contradictory and hard to interpret...

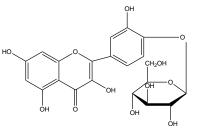


Food is More Complex Than a Drug

- Non-essential nutrient bioactives represent a wide range of chemical structures with tremendous variability in foods
- Little understanding of synergistic reactions between dietary components in foods
- Limited understanding of chemical composition of foods
 Cultivar variability, agronomic inputs, growing region, etc.,
- Limited understanding on how processing, storage, formulation, and packaging influence bioactive chemistry
 - Oxidation, polymerization, Maillard reaction, etc.
 - Food-matrix chemistry

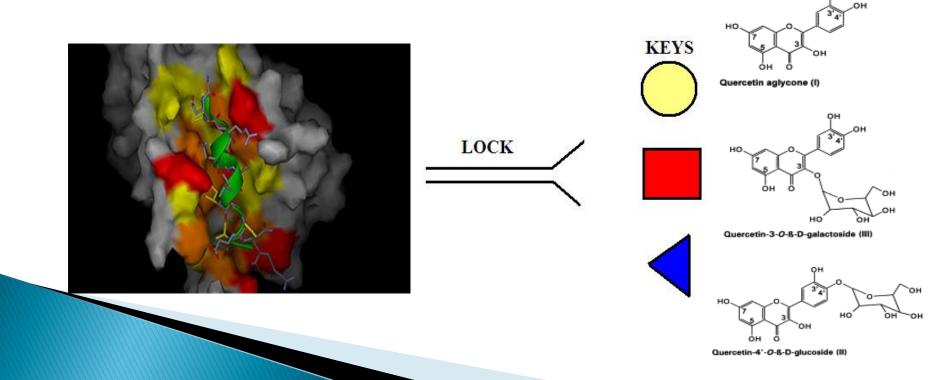
Limited information on how humans absorb and metabolize bioactives in foods


The Flavonoids

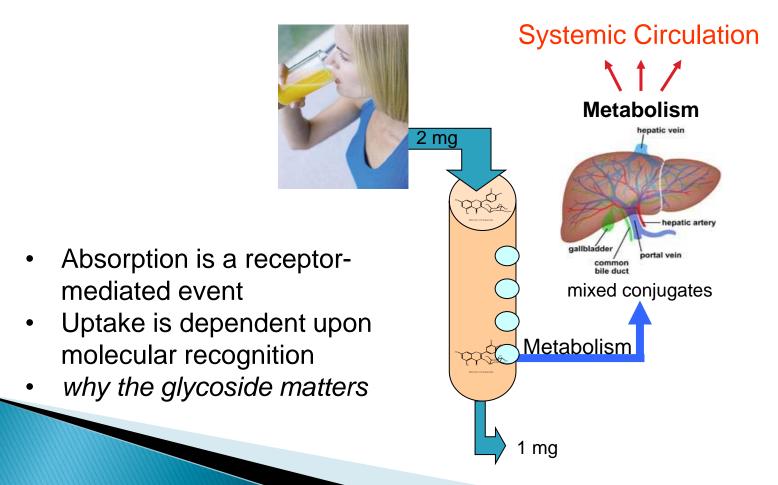

Flavonoids are diphenylpropanes based upon a C_6 - C_3 - C_6 carbon backbone Roughly 2% of all hydrocarbons fixated in photosynthesis are converted into flavonoids Flavonoids have diverse biological properties with human health implications

Quercetin: A Model Flavonol

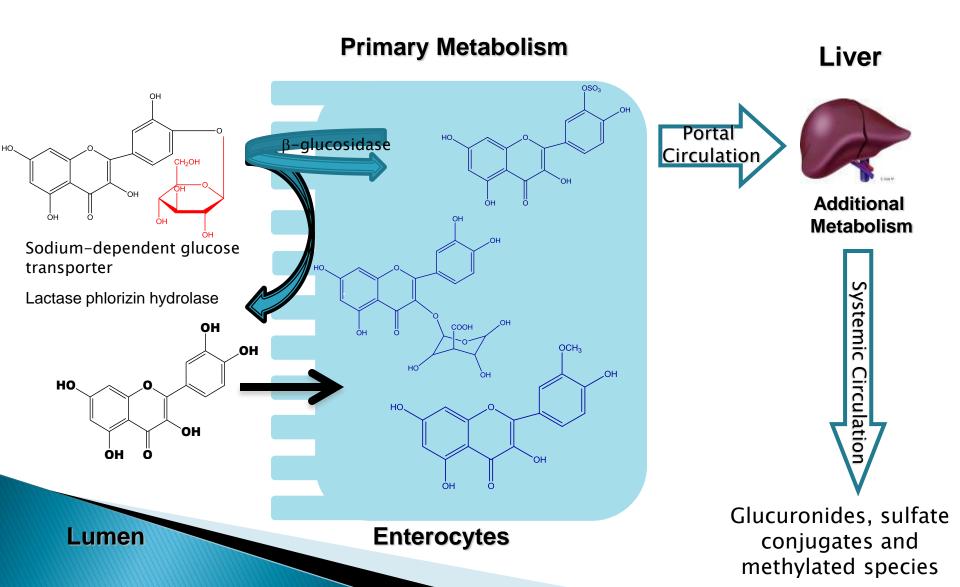
- Major flavonoid in the US diet
 - Antioxidant, anti-inflammatory, improves vascular activity, etc.
 - Exists with different sugars attached (glycosides)
 - Sources include:
 - Onions 210 mg/100 g fresh wt
 - Apple peel 30 mg/100 g fresh wt
- Biological activity depends upon bioavailability
 - Bioavailability is highly dependent upon the glycoside
 - The dominant type of glycoside varies between foods and cultivars


Q 4'-*O*- glucoside Primary form found in onions

Q 3-*O*-galactoside Primary form found in apples


Why the Glycoside is Important

- Receptors recognize molecules largely by shape
 - Protein interactions are specific, intermolecular distances are critical for interactions between amino acids and active sites on molecules
- Receptors in the lumen of the gut have differing affinities for the gylcosides of quercetin
- Will this influence absorption ?



Bioavailability

The fraction of an administered dose of *unchanged* compound that is available to the body for use in normal physiological functions, metabolism or for storage (i.e. reaches systemic circulation)

Quercetin Uptake & Metabolism

Metabolites and Biological Activity

Influence of Quercetin Metabolites on LDL Oxidation 500 Quercetin-3'-sulfate 450 oxidation Isorhamnetin-3-glucuronide b 400 **Q-7-glucuronide** 350 ГР Quercetin 300 Q-3-glucuronide -ag time (min) of 250 200 **Te** 150 100 50 -0.10.4 0.9 1.4 1.9 concentration (µM)

(Janisch et al., 2004, Free Radic. Res. 38(8): 877-

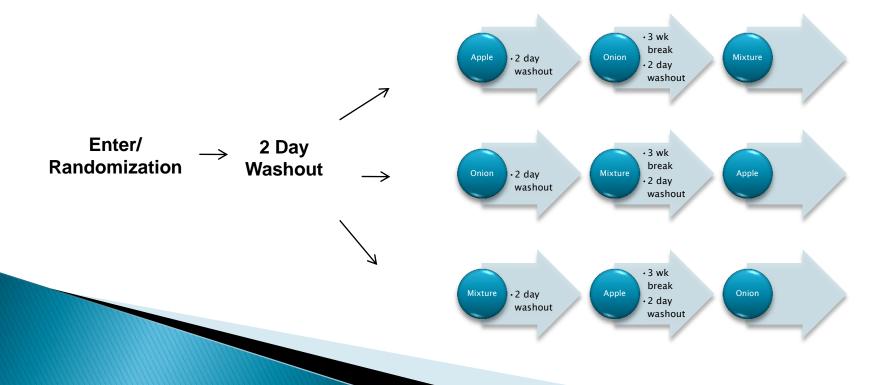
Influence of Glycoside on Metabolite Profiles

ОН

OH

0

OH

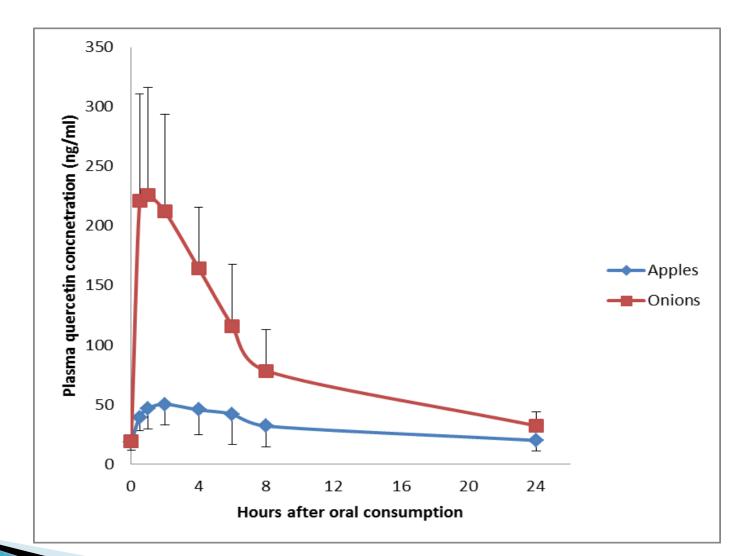

HO

OH

- Study Rational:
- To investigate the complement of quercetin metabolites in plasma in response to two different foods with the same level of quercetin aglycone equivalents yet composed of differing quercetin glycosides
- Interest is in how the glycoside influences basic pharmacokinetic parameters (absorption and metabolism) and potential bioactivity

Clinical Study Design

- Feeding Trial randomized crossover design
- 16 subjects (8 male/ 8 female)
- Plasma taken at 0, 0.5, 1, 2, 4, 6, 8, and 24 hr post consumption of applesauce fortified with micronized apple peel or micronized onion powder (100 mg quercetin eqivalents)



Quercetin Profile of Fortified Applesauce (mg)

quercetin glycosides	100 g applesauce fortified with				
	apple peel powder	onion powder			
quercetin 3,4'-O- diglucoside	0	44.9			
quercetin 3-0–rutinoside (rutin)	6.5	0			
quercetin 3-O-galactoside	16.8	0			
quercetin 3-O-glucoside	16.1	4.9			
quercetin -O-xyloside	9.3	0			
quercetin -O- arabinofuranose	3.0	0			
quercetin -O- arabinopyranose	17.6	0			
quercetin 3-O-rhamnoside	30.6	0			
quercetin 4'-O-glucoside	0	48.7			
total	99.9 ± 2.3	98.5 ± 2.1			

(JH Lee 2. JAE Mitchell, 2012, J. Agric. Food Chem., 60: 3874-3881)

Bioavailability of Total Plasma Quercetin

HLee and AE Mitchell, 2012, J. Agric. Food Chem., 60: 3874-3881

Accurate Mass Q –TOF MS Analysis of Quercetin Metabolites

- The next step was to identify the range of quercetin metabolites in these samples
 - Instrument: Agilent 1290 UHPLC interfaced with a 6530 Accurate Mass Q-TOF MS
 - Separation: Poroshell C₁₈ (2.1 x 100, 2.7 μm) column
 - Mobile phase: a linear gradient of (A) 0.1% formic acid in water and (B) 0.1% formic acid in acetonitrile
 - The limit of detection was 6 ng/mL in plasma and the linear dynamic range spanned three orders of magnitude
 - The extraction recovery was 87-108% when the absolute recovery was measured

Accurate Mass and Library Assisted Identification of Quercetin Metabolites

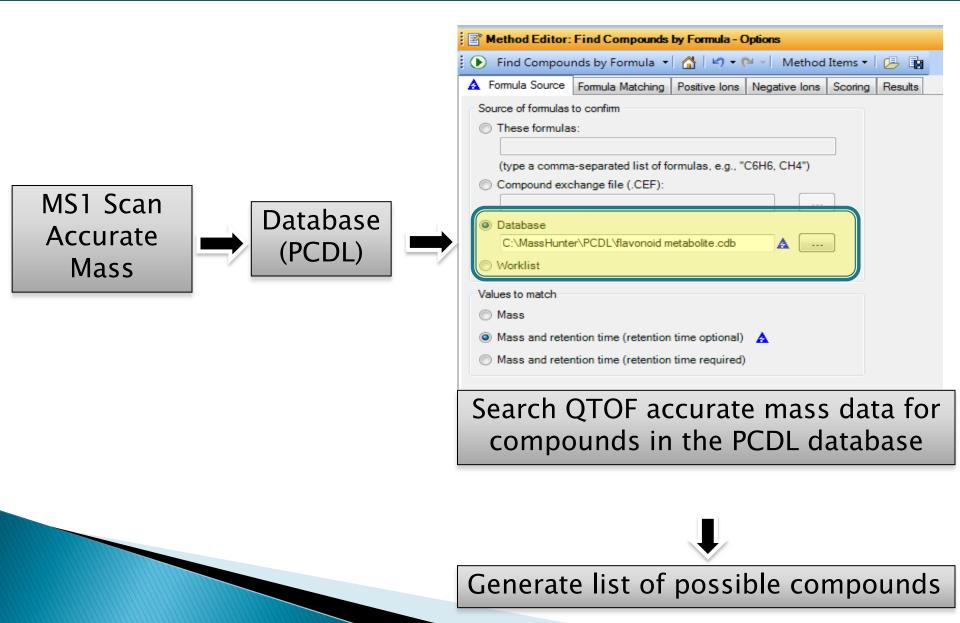
Build a Library of All Possible Quercetin

Metabolites

 The exact masses of all *potential* quercetin metabolites were compiled into a Personal Compound Database Library (PCDL) and imported into MassHunter Qualitative Analysis Software (Agilent Tech)

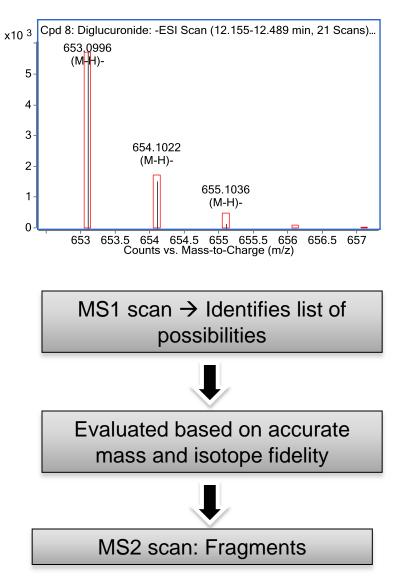
2. Q-TOF: MS1 Scan - Targeted Unknowns

 MS1 scan was search against the PCDL library and quercetin metabolites in plasma were identified based on accurate mass, isotope abundance and isotope spacing

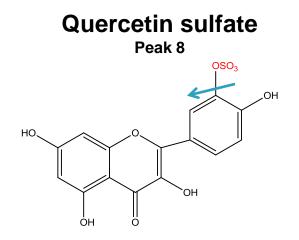

3. Q-TOF: MS2 Scan - Targeted MS/MS

 Tandem MS was used for building structural confidence of quercetin metabolites identified by accurate match formula matching

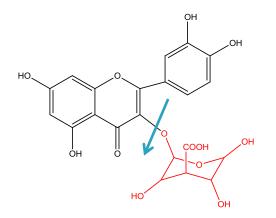
Building an Accurate Mass Library of Quercetin Metabolites

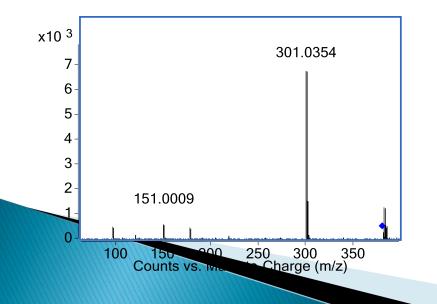

🔛 м	assHunte	er PCDL Manag	ger for Metabol	lomics - C:\MassHunt	er\PCDL\flav	onoid met	abolite 031	92012.cdb	-						
E Fil	e Edit	View PC	DL Links	Help											
	Find Com	npounds 🖪	u 🗋 🖆	0											
	Single Sea	arch	Batch Search	Batch Summa	arv	Edit Compo	ounds	Spectral S	earch	Browse Sp	ectra	Edit Spectra			
	-				-,		l								
	Name:	Quercetin glucu	uronide					Edit ac	tions			tructure MOL Tex	đ		ſ
	IUPAC:			🔎 6 decima	l place	S			Add New		Q				04
	Mass:	478.07474	K	CAS:					ave As New		_		он		Ĩ.,
	RT:	13.1							ave As New			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Z	-	(
				ChemSpider:				Up	date Selected	ť		но	- OH	\frown	
- F	formula:	C21H18O13		METLIN:					elete Selected					\searrow	Кон
		lon type		KEGG:					Hele Selected					OH O	
		 Neutral 		HMP:											
		 Anion 									Notes:				
				LMP:							NOLES.				
		Cation													
Sing	gle Sea	arch Results	s: 25 hits												
		Compound	Name	Formula	Mass	Anion	Cation	RT (min)	CAS	ChemSpider	METLIN	HMP	KEGG	LMP	IUPAC
	Methyl qu	ercetin diglucura	onide	C28H28O	668.12248			10.700							
	Quercetin	diglucuronide		C27H260	654.10683			11.100							
	Methyl qu	ercetin diglucura	onide	C28H28O	668.12248			11.220							
	Quercetin	diglucuronide		C27H260	654.10683			12.180							
	Quercetin	diglucuronide		C27H260	654.10683			12.320							
Þ	Quercetin	glucuronide		C21H180	478.07474			13.100							
	Quercetin	glucuronide		C21H18O	478.07474			16.800							
•	••			00011000	100 00000			40.050							•

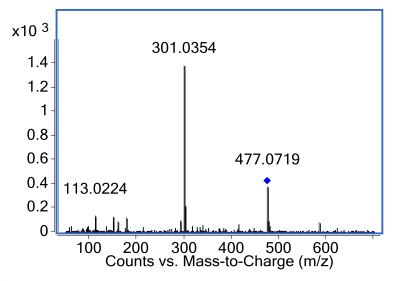
Q TOF MS1 Scan: Targeted Unknown Identification

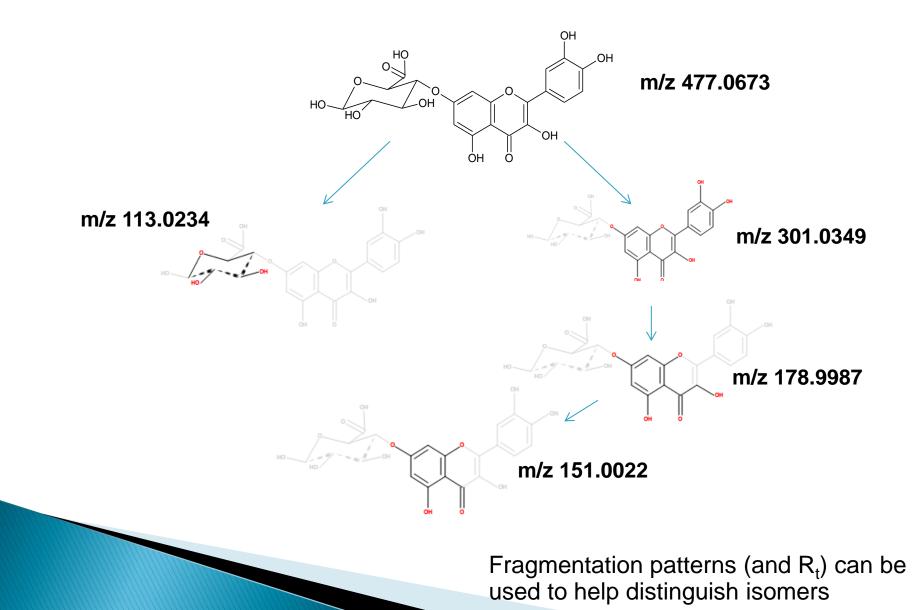


Identification Based Upon Accurate Mass and Isotope Fidelity

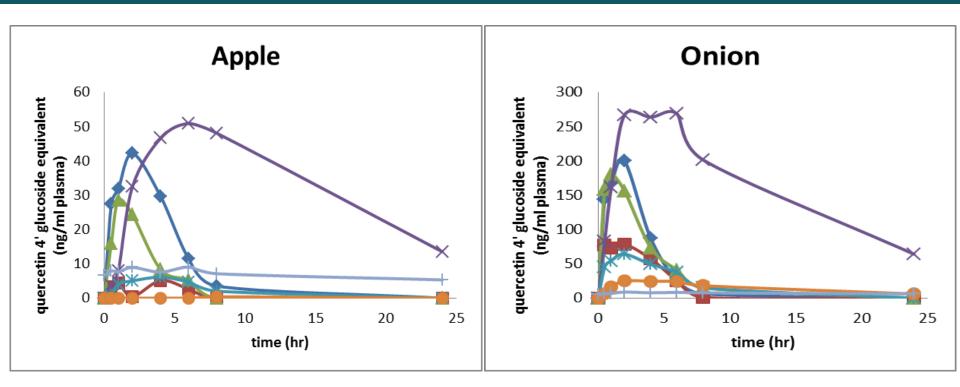

peak	RT (min)	possible compounds	type of molecular ion	predicted m/z	observed m/z	error (ppm)
1	8.86	Methyl Q diglucuronide	[M-H] ⁻	667.1152	667.1146	0.9
2	10.07	Q diglucuronide	[M-H]⁻	653.0996	653.0987	1.4
3	10.70	Methyl Q diglucuronide	[M-H] ⁻	667.1152	667.1136	2.4
4	11.10	Q diglucuronide	[M-H] ⁻	653.0996	653.0986	1.5
5	11.22	Methyl Q diglucuronide	[M-H] ⁻	667.1152	667.1147	0.6
6	12.18	Q diglucuronide	[M-H] ⁻	653.0996	653.0989	1.1
7	12.32	Q diglucuronide	[M-H] ⁻	653.0996	653.0989	1.1
8	13.38	Q glucuronide sulfate	[M-H] ⁻	557.0243	557.0240	0.5
9	13.10	Q-3-glucuronide	[M-H] ⁻	477.0675	477.0671	0.8
10	16.80	Q-3'-glucuronide	[M-H]⁻	477.0675	477.0673	0.4
11	16.85	Methyl Q 3 glucuronide	[M-H] ⁻	491.0831	491.0832	-0.2
12	16.90	Q glutathione	[M+HCOO] -	651.1012	651.0998	2.2
13	17.07	Q glucuronide	[M-H] ⁻	477.0675	477.0672	0.6
14	17.10	Methyl Q glucuronide	[M-H] ⁻	491.0831	491.0831	0.0
15	17.45	Q-3-sulfate	[M-H] ⁻	380.9922	380.9925	-0.8




Targeted MS/MS of Library-Assisted Identified Metabolites: Building Confidence


Quercetin glucuronide Peaks 9, 10, 13

Fragmentation of Quercetin Glucuronide

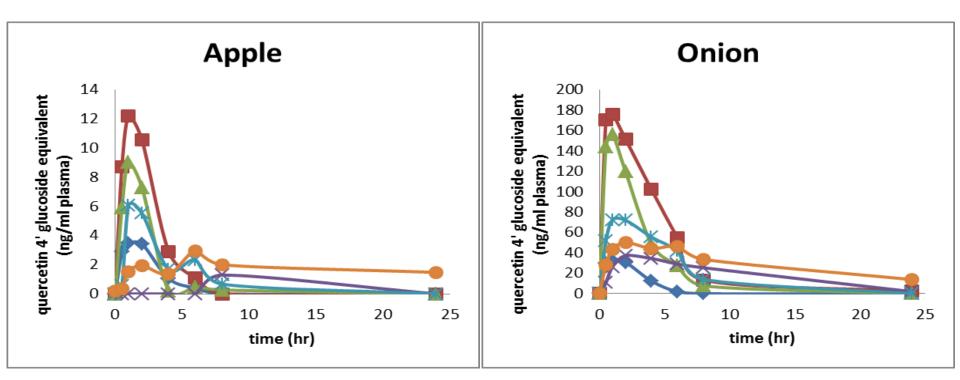


Simplifying Metabolite Profiling: Grouping Metabolites

peak	RT (min)	possible compounds	observed m/z
1	8.86	Methyl Q diglucuronide	667.1146
2	10.07	Q diglucuronide	653.0987
3	10.70	Methyl Q diglucuronide	667.1136
4	11.10	Q diglucuronide	653.0986
5	11.22	Methyl Q diglucuronide	667.1147
6	12.18	Q diglucuronide	653.0989
7	12.32	Q diglucuronide	653.0989
8	13.38	Q glucuronide sulphate	557.0240
9	13.10	Q-3-glucuronide	477.0671
10	16.80	Q-3'-glucuronide	477.0673
11	16.85	Methyl Q 3 glucuronide	491.0832
12	16.90	Q glutathione	651.0998
13	17.07	Q glucuronide	477.0672
14	17.10	Methyl Q glucuronide	491.0831
15	17.45	Q-3-sulphate	380.9925

group	Q metabolite groups
1	Q sulphate
2	Q glucuronide
3	Q diglucuronide
4	Q glucuronide sulphate
5	Q glutathione
6	Methyl Q glucuronide
7	Methyl Q diglucuronide

Plasma Quercetin Metabolites (ESI-)

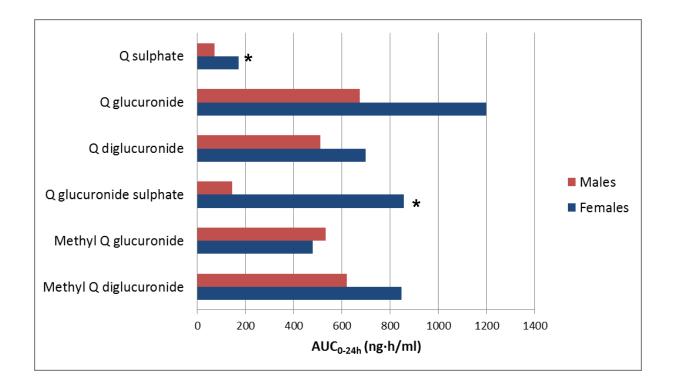


- Q metabolites profiles were similar for apples and onions
- Total bioavailability differed significantly
- Gluc-sulphate, sulphate, di-glucuronide
 - GSH-conj

- Quercetin sulphate
 Quercetin glucuronide
 Quercetin diglucuronide

- Methyl quercetin glucuronide
- Methyl quercetin diglucuronide

Plasma Quercetin Metabolites (ESI+)


- The Q metabolite profiles were similar for apples and onions
- Total bioavailability differed significantly
- Glucuronide, di-glucuronide, methyl-glucuronide
 - Polarity of ESI impacts ionization efficiency of quercetin metabolites

- —Quercetin sulphate
- Quercetin glucuronide
- ----- Quercetin diglucuronide
- \rightarrow Quercetin glucuronide sulphate
- ----Methyl quercetin diglucuronide

Pharmacokinetic Parameters (ESI+)

	C _{max} (ng/ml)	AUC _{0-24h} (ng∙h/ml)	T _{max} (h)
Apple peel fortified			
Q sulphate	4.6 ± 6.3	12.0 <u>+</u> 17.3	1.7 ± 1.2
Q glucuronide	15.5 ± 13.3	37.3 ± 36.9	2.2 ± 1.6
Q diglucuronide	9.3 ± 15.2	24.4 ± 40.6	2.0 ± 1.6
Q glucuronide sulphate	1.3 ± 4.8	11.6 ± 43.6	8.0 ± 0.0
Methyl Q glucuronide	7.5 ± 8.7	27.2 <u>+</u> 41.8	2.4 ± 1.8
Methyl Q diglucuronide	3.6 ± 5.4	42.6 ± 85.8	5.6 <u>+</u> 2.2
Onion powder fortified			
Q sulphate	51.9 ± 67.7	113.9 ± 86.7	1.3 ± 0.7
Q glucuronide	284.7 ± 329.9	897.9 ± 656.3	2.4 ± 1.9
Q diglucuronide	267.7 ± 330.8	591.0 ± 293.5	1.8 ± 1.6
Q glucuronide sulphate	86.7 ± 182.9	453.6 ± 668.4	4.0 ± 1.4
Methyl Q glucuronide	158.2 ± 285.1	509.6 ± 204.3	2.6 ± 2.0
Methyl Q diglucuronide	87.3 ± 94.2	717.2 ± 284.0	3.5 ± 2.2

Gender-Related Differences

 AUCs of Q sulphate and Q glucuronide sulphate were greater in females than in males (p<0.05)

Conclusions

- UHPLC(ESI) Q-TOF MS/MS methods facilitated identification of quercetin metabolites in plasma
 - Improved sensitivity allowed for kinetic monitoring of individual quercetin metabolites in plasma over 24 hours
 - Polarity of ESI impacts ionization efficiency of quercetin metabolites
- The major quercetin metabolites included quercetin glucuronide, quercetin sulphate and quercetin diglucuronide regardless of dietary source
- T_{max} of methyl quercetin diglucuronide and quercetin glucuronide sulphate differ between treatment groups
- AUCs of Q sulphate and Q glucuronide sulphate were greater in females than in males (p < 0.05)

Acknowledgements Advancing Knowledge a Team Effort

- UC Davis
 - JiHyun Lee, PhD
 - Susan Ebeler, PhD
 - Daniel Roberts MS
- WHNRC (Clinical Trials)
 - Ellen Bonnel ,PhD
 - Leslie Woodhouse, RN

- Center for Advanced Processing and Packaging Studies (CAPPS)
 - Patrick Dunn, PhD, Combat Feeding Directorate of the U.S. Army
- Agilent Technologies
 - Jerry Zweigenbaum, PhD
 - Steven Fischer, PhD
- Oregon Freeze Dry, Inc., Gills Onions, LLC,

Cadbury Schweppes

Dr. Paul Needs for quercetin metabolite standards

